3.259 \(\int \frac{(e \cos (c+d x))^{3/2}}{(a+a \sin (c+d x))^3} \, dx\)

Optimal. Leaf size=118 \[ -\frac{2 e^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 a^3 d \sqrt{e \cos (c+d x)}}+\frac{2 e \sqrt{e \cos (c+d x)}}{21 d \left (a^3 \sin (c+d x)+a^3\right )}-\frac{4 e \sqrt{e \cos (c+d x)}}{7 a d (a \sin (c+d x)+a)^2} \]

[Out]

(-2*e^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(21*a^3*d*Sqrt[e*Cos[c + d*x]]) - (4*e*Sqrt[e*Cos[c + d*
x]])/(7*a*d*(a + a*Sin[c + d*x])^2) + (2*e*Sqrt[e*Cos[c + d*x]])/(21*d*(a^3 + a^3*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.133818, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2680, 2683, 2642, 2641} \[ -\frac{2 e^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 a^3 d \sqrt{e \cos (c+d x)}}+\frac{2 e \sqrt{e \cos (c+d x)}}{21 d \left (a^3 \sin (c+d x)+a^3\right )}-\frac{4 e \sqrt{e \cos (c+d x)}}{7 a d (a \sin (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^(3/2)/(a + a*Sin[c + d*x])^3,x]

[Out]

(-2*e^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(21*a^3*d*Sqrt[e*Cos[c + d*x]]) - (4*e*Sqrt[e*Cos[c + d*
x]])/(7*a*d*(a + a*Sin[c + d*x])^2) + (2*e*Sqrt[e*Cos[c + d*x]])/(21*d*(a^3 + a^3*Sin[c + d*x]))

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
 p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2683

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(g*Cos[e
 + f*x])^(p + 1))/(a*f*g*(p - 1)*(a + b*Sin[e + f*x])), x] + Dist[p/(a*(p - 1)), Int[(g*Cos[e + f*x])^p, x], x
] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && IntegerQ[2*p]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(e \cos (c+d x))^{3/2}}{(a+a \sin (c+d x))^3} \, dx &=-\frac{4 e \sqrt{e \cos (c+d x)}}{7 a d (a+a \sin (c+d x))^2}-\frac{e^2 \int \frac{1}{\sqrt{e \cos (c+d x)} (a+a \sin (c+d x))} \, dx}{7 a^2}\\ &=-\frac{4 e \sqrt{e \cos (c+d x)}}{7 a d (a+a \sin (c+d x))^2}+\frac{2 e \sqrt{e \cos (c+d x)}}{21 d \left (a^3+a^3 \sin (c+d x)\right )}-\frac{e^2 \int \frac{1}{\sqrt{e \cos (c+d x)}} \, dx}{21 a^3}\\ &=-\frac{4 e \sqrt{e \cos (c+d x)}}{7 a d (a+a \sin (c+d x))^2}+\frac{2 e \sqrt{e \cos (c+d x)}}{21 d \left (a^3+a^3 \sin (c+d x)\right )}-\frac{\left (e^2 \sqrt{\cos (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{21 a^3 \sqrt{e \cos (c+d x)}}\\ &=-\frac{2 e^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 a^3 d \sqrt{e \cos (c+d x)}}-\frac{4 e \sqrt{e \cos (c+d x)}}{7 a d (a+a \sin (c+d x))^2}+\frac{2 e \sqrt{e \cos (c+d x)}}{21 d \left (a^3+a^3 \sin (c+d x)\right )}\\ \end{align*}

Mathematica [C]  time = 0.0659085, size = 66, normalized size = 0.56 \[ -\frac{(e \cos (c+d x))^{5/2} \, _2F_1\left (\frac{5}{4},\frac{11}{4};\frac{9}{4};\frac{1}{2} (1-\sin (c+d x))\right )}{5\ 2^{3/4} a^3 d e (\sin (c+d x)+1)^{5/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Cos[c + d*x])^(3/2)/(a + a*Sin[c + d*x])^3,x]

[Out]

-((e*Cos[c + d*x])^(5/2)*Hypergeometric2F1[5/4, 11/4, 9/4, (1 - Sin[c + d*x])/2])/(5*2^(3/4)*a^3*d*e*(1 + Sin[
c + d*x])^(5/4))

________________________________________________________________________________________

Maple [B]  time = 1.905, size = 401, normalized size = 3.4 \begin{align*}{\frac{2\,{e}^{2}}{21\,{a}^{3}d} \left ( 8\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}-12\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}\cos \left ( 1/2\,dx+c/2 \right ) +6\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) -28\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{5}-\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -22\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) +28\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+5\,\sin \left ( 1/2\,dx+c/2 \right ) \right ) \left ( 8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}-12\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+6\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}e+e}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^3,x)

[Out]

2/21/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/a^3/sin(1/2*d*x+1/2*c)/(-2*sin(
1/2*d*x+1/2*c)^2*e+e)^(1/2)*(8*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d
*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^6-12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4+8*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+6*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2
-8*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-28*sin(1/2*d*x+1/2*c)^5-(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-22*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+28*sin(1/2
*d*x+1/2*c)^3+5*sin(1/2*d*x+1/2*c))*e^2/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \cos \left (d x + c\right )\right )^{\frac{3}{2}}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^(3/2)/(a*sin(d*x + c) + a)^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{e \cos \left (d x + c\right )} e \cos \left (d x + c\right )}{3 \, a^{3} \cos \left (d x + c\right )^{2} - 4 \, a^{3} +{\left (a^{3} \cos \left (d x + c\right )^{2} - 4 \, a^{3}\right )} \sin \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

integral(-sqrt(e*cos(d*x + c))*e*cos(d*x + c)/(3*a^3*cos(d*x + c)^2 - 4*a^3 + (a^3*cos(d*x + c)^2 - 4*a^3)*sin
(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**(3/2)/(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \cos \left (d x + c\right )\right )^{\frac{3}{2}}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((e*cos(d*x + c))^(3/2)/(a*sin(d*x + c) + a)^3, x)